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Esophageal squamous cell carcinoma (ESCC) is one of the deadliest digestive system
cancers worldwide lacking effective therapeutic strategies. Recently, it has been found that
the natural product celastrol plays an anti-cancer role in several human cancers by
inducing cell cycle arrest and apoptosis. However, it remains elusive whether and how
celastrol suppresses tumor growth of ESCC. In the present study, for the first time, we
demonstrated that celastrol triggered both extrinsic and intrinsic apoptosis pathways to
diminish the tumor growth of ESCC in vivo and in vitro. Mechanistic studies revealed that
celastrol coordinatively induced DR5-dependent extrinsic apoptosis and Noxa-dependent
intrinsic apoptosis through transcriptional activation of ATF4 in ESCC cells. Furthermore,
we found that the FoxO3a-Bim pathway was involved in the intrinsic apoptosis of ESCC
cells induced by celastrol. Our study elucidated the tumor-suppressive efficacy of celastrol
on ESCC and revealed a previously unknown mechanism underlying celastrol-induced
apoptosis, highlighting celastrol as a promising apoptosis-inducing therapeutic strategy
for ESCC.
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INTRODUCTION

Esophageal cancer is one of the most aggressive digestive system cancers globally (Bray et al., 2018).
Esophageal squamous cell carcinoma (ESCC) is themain histologic subtype among all types of esophageal
tumors, which is more prevalent in East Asia (Huang and Fu, 2019). At present, surgery combined with
neoadjuvant chemotherapy and radiotherapy is the first-line treatment for ESCC (Watanabe et al., 2019).
Major limitations of the treatment of ESCC include high toxicity and acquired therapeutic resistance to
chemotherapy and radiotherapy, as well as the high recurrence rate of surgery (Leng et al., 2020). In recent
years, although some clinical advances have been made in the development of diagnosis and therapeutic
techniques, the overall 5-year survival rate for ESCC patients is still very poor (Han et al., 2022).
Consequently, it is pressingly needed to facilitate the development of effective strategies for ESCC therapy.

Recently, natural products have been increasingly used in the treatment and prevention of human
cancers due to their significant efficacy and few side effects (Deng et al., 2020; Ma et al., 2021; Yang
et al., 2021). A variety of natural products were confirmed to exert anti-ESCC activity by inducing
apoptosis, regulating autophagy, arresting the cell cycle, and inhibiting metastasis (Ying et al., 2018).
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FIGURE 1 | Celastrol inhibited the viability of ESCC cells. (A) Chemical structure of celastrol. (B) Human ESCC cells Eca109 and EC1 were treated with indicated
concentrations of celastrol for 72 h, and cell viability was determined by ATPlite assay. Representative inhibitory curves for each cell line were shown. (C) ATPlite assay
was used to determine the cell growth of Eca109 and EC1 cells at the indicated concentration of celastrol or DMSO for 0, 24, 48, and 72 h (D,E) Representative images
of three independent experiments were shown for the inhibition of colony formation by 0.5, 1, and 2 μM celastrol or DMSO for 10 days. Graphs of the relative
number of colonies were performed. ppdenotes p < 0.01, pppdenotes p < 0.001, n.s. denotes not significant.
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For example, the natural product berberine was found to inhibit
the proliferation of ESCC cells by promoting cell cycle arrest at
the G2/M phase (Jiang et al., 2017). Furthermore, echinatin, a
compound isolated from the Chinese herb Glycyrrhiza uralensis
Fisch, suppressed the growth and invasion of ESCC cells by
inducing AKT/mTOR-dependent autophagy and apoptosis
(Hong et al., 2020). In addition, the herbal ingredient
artesunate inhibited the migration of ESCC cells by interfering
with DNA synthesis and destroying the cytoskeleton (Shi et al.,
2015). Therefore, natural products exhibited substantial anti-
ESCC efficacy, which was expected to provide a new direction
for the clinical treatment of ESCC.

The natural product celastrol is a kind of pentacyclic triterpene
extracted from the herbaceous plant Tripterygium wilfordii Hook F
(TWHF) (Figure 1A), which possesses anti-inflammatory, anti-
rheumatic, and some other pharmacological activities (Yang
et al., 2017; Zhang et al., 2017; Tang et al., 2018; Saito et al.,
2019; Wong et al., 2019; Ye et al., 2020). Recent studies have
shown that celastrol exerts potential anti-cancer activity in
various human cancers, including breast cancer, gastric cancer,
lung cancer, and colorectal cancer (Dharambir et al., 2018). It
was reported that celastrol inhibited breast cancer cell’s metastasis
by intervening M2-like polarization by inhibiting STAT6 (Yang
et al., 2018). Moreover, celastrol was found to suppress nitric oxide
(NOS) synthases and the angiogenesis pathway, thereby inhibiting
the growth andmigration of colorectal cancer cells (Gao et al., 2019).
However, the tumor-suppressive efficacy of celastrol on ESCC and
the underlying mechanisms remain largely undefined.

Inducing apoptosis is an effective way to prevent and treat human
cancers (Carneiro and El-Deiry, 2020; Shahar and Larisch, 2020).
Extrinsic (death receptor-mediated) apoptosis and intrinsic
(mitochondrial) apoptosis represent the most important cytotoxic
pathways activated by anti-cancer agents (Kale et al., 2017). In
extrinsic apoptosis, death receptors, such as Fas and TRAIL, interact
with their specific ligands to trigger apoptosis cascades by recruiting
and activating the main downstream factor caspase 8 (Daolin et al.,
2019). Intrinsic apoptosis is activated by the release of cytochrome c
inmitochondria and the cleavage of caspase 9, and is regulated by the
balance between pro-survival and pro-apoptotic Bcl-2 protein family
members (Diepstraten et al., 2022). So far, the underlying
mechanisms of celastrol triggering ESCC apoptosis are still
unclarified. Here, for the first time, we validated the anti-tumor
activity of celastrol in ESCC both in vivo and in vitro.
Mechanistically, we revealed that celastrol suppressed the tumor
growth of ESCC by activating DR5-dependent extrinsic and Noxa/
Bim-dependent intrinsic apoptosis. Our findings not only elucidated
the tumor-suppressive efficacy of ESCC and its underlying
mechanism but also provided preliminary evidence for the
clinical treatment of ESCC by celastrol.

MATERIALS AND METHODS

Cell Culture
Human ESCC cell lines Eca109 and EC1 were purchased from the
Type Culture Collection of the Chinese Academy of Sciences
(Shanghai, China), and cultured in media at 37°C with 5% CO2.

All media consisted of Dulbecco’s Modified Eagle’s Medium
(DMEM, BasalMedia, Shanghai, China), 10% fetal bovine
serum (FBS, Biochrom AG, Berlin, Germany), and 1%
penicillin-streptomycin solution (BasalMedia, Shanghai, China).

Reagents
Celastrol was acquired fromMCE (MedChem Express, Shanghai,
China), and the purity of the compounds was ≥99.65%. Celastrol
was dissolved in dimethyl sulfoxide (DMSO), and DMSO was
used as the vehicle control. For in vivo study, celastrol was
dissolved first in DMSO and then in 10% 2-hydroxypropyl-β-
cyclodextrin (Sangon Biotech, Shanghai, China).

Antibody
Primary antibodies to the following proteins were used: cleaved
PARP (c-PARP), cleaved caspase 8 (c-caspase 8), cleaved caspase
9 (c-caspase 9), ATF4, CHOP, Noxa, DR3, Bax, Bad, Bid, Bim,
p53, p21, p-histone 3 (p-H3), p-H2AX, p-cdc2 (Cell Signaling
Technology, Danvers, MA, United States); DR5 and FoxO3a
(Abcam, Cambridge, MA, United States); TNFR1, TNFR2 and
β-actin (HuaBio, China).

Cell Viability Assay
For cell viability assay, cells were seeded in black 96-well plates
with 2×103 cells per well in triplicate and allowed to attach
overnight. Cells were treated with DMSO, celastrol, Z-VAD-
FMK (MedChem Express, Shanghai, China), or both celastrol
and Z-VAD-FMK at the indicated concentrations for the
indicated time. According to the manufacturer’s protocol, the
cell proliferation was measured by ATPlite luminescence assay
(PerkinElmer, Norwalk, CT, United States) at the end of the
incubation. The IC50 values were measured by the Logit method.

Clonogenic Survival Assay
For clonogenic survival assay, cells were seeded in six-well plates
with 400 cells per well in triplicate and allowed to attach
overnight. Cells were treated with DMSO or celastrol at the
indicated concentrations and cultured for 10 days. At the end
of incubation, cells were stained with crystal violet. Colonies with
more than 50 cells each were counted and photographed with a
gel imager (GelDoc XR System, Bio-rad, United States).

Apoptosis Assay
For apoptosis assay, cells were seeded at a density of 2.5 × 105 cells
per well in six-well plates and allowed to attach overnight. Cells
were exposed to DMSO or celastrol for 24 h and stained with
AnnexinV-FITC and PI Apoptosis Kit according to the
manufacturer’s protocol (Share Biotechnology, Shanghai,
China). Data were collected and analyzed using a flow
cytometer (Beckman Coulter CytoFLEX, CA, United States).

Cell Cycle Analysis
For cell cycle analysis, cells were seeded at a density of 2.5 × 105

cells per well in six-well plates and allowed to attach overnight.
Cells were exposed to DMSO or celastrol for 24 h. And then cells
were harvested and fixed in 70% ice-cold ethanol at −20°C
overnight. The samples were incubated in propidium iodide
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(PI, 36 mg/ml; Sigma, St. Louis, MO, United States) for 15 min at
37°C. The cells were detected by flow cytometer (Beckman
Coulter CytoFLEX, State of California, United States). Data of
cell cycle were analyzed with FlowJo 8 software.

Western Blot Analysis
Total protein from cultured cells and tumor tissues was collected
by using RIPA (Radio Immunoprecipitation Assay) lysis buffer,
and protein concentration was quantified using a BCA protein
assay kit (Vazyme Biotech, Nanjing, China). 20–40 mg protein
was resolved by 7.5–15% SDS-PAGE, followed by electro-
transferred to an Immobilon-PVDF Membrane (Merck
Millipore Ltd, Tullagreen, Ireland). The membrane was then
blocked with 5% skim milk for 1 h at room temperature. After
being washed three times with TBST, PVDF membranes were
incubated with primary antibodies at 4°C overnight. After
washing, corresponding second antibodies were incubated with
membranes for 1 h at room temperature, and the membranes
were photographed by Tanon 5200 visualizer (Tanon, Shanghai,
China).

Real-Time Polymerase Chain Reaction
Analysis
According to the manufacturer’s instructions, total RNA was
isolated by using the Ultrapure RNA kit (ComWin Biotech,
Beijing, China). Total RNA was purified and reversed to
cDNA by using the PrimerScript reverse transcription reagent
kit (Vazyme Biotech, Nanjing, China). The cDNA was quantified
with RT-PCR by using the Power SYBR Green PCR MasterMix
(Vazyme Biotech, Nanjing, China) on the ABI 7500 thermocycler
(Applied Biosystems, Foster City, CA, United States). The mRNA
data of each sample were normalized to β-actin. ATF4, CHOP,
DR5, Noxa, Bim, and FoxO3a are encoded by ATF4, CHOP
(DDIT3),DR5 (TNFRSF10B),NOXA (PMAIP1), BIM (BCL2L11),
and FOXO3 genes, respectively. The sequences of the primers
were as follows: human β-actin: forward 5′-CGTGCGTGACAT
TAAGGAGAAG-3′; and reverse 5′-AAGGAAGGCTGGAAG
AGTGC-3′; human ATF4: forward 5′-ATGACCGAAATG
AGCTTCCTG-3′, and reverse 5′-GCTGGAGAACCCATG
AGGT-3′; human CHOP: forward 5′-AGCCAAAATCAGAGC
TGGAA-3′, and reverse 5′-TGGATCAGTCTGGAAAAGCA-3′;
human DR5: forward 5′-CCAGCAAATGAAGGTGATCC-3′,
and reverse 5′-GCACCAAGTCTGCAAAGTCA-3′; human
NOXA: forward 5′-ACCAAGCCGGATTTGCGATT-3′, and
reverse 5′-ACTTGCACTTGTTCCTCGTGG-3′; human BIM:
forward 5′-TAAGTTCTGAGTGTGACCGAGA-3′, and reverse
5′-GCTCTGTCTGTAGGGAGGTAGG-3′; human FOXO3:
forward 5′-CAGCCAGTCTATGCAAACCC-3′, and reverse 5′-
ATCCAACCCATCAGCATCCA-3′.

siRNA Silencing
The cells were transfected with siRNA oligonucleotides by using
Lipofectamine 2000 (Invitrogen, United States). Opti-MEM
(Invitrogen, United States) was used to incubate with siRNA
and Lipofectamine 2000 according to the manufacturer’s
instructions. All siRNAs were synthesized by GenePharma

(Shanghai, China). The sequences of siRNA were as follows:
siControl: 5′-UUCUCCGAACGUGUCACGUTT-3′; siATF4-1:
5′-CCCUUCAGAUAAUGAUAGUTT-3′; siATF4-2: 5′-CCT
CACTGGCGAGTGTAAA-3′; siDR5-1: 5′-AAGACCCUUGUG
CUCGUUGUC-3′; siDR5-2: 5′-CAGCCGUAGUCUUGAUUG
UTT-3′; siNOXA-1: 5′-GGUGCACGUUUCAUCAAUUUGTT-
3′; siNOXA-2: 5′-CCGGCAGAAACUUCUGAAUTT-3′; siBIM-
1: 5′-UCUUACGACUGUUACGUUAUU-3′; siBIM-2: 5′-CAA
CCACUAUCUCAGUGCA-3′; siFOXO3-1: 5′-GGAACGUGA
UGCUUCGCAATT-3′; siFOXO3-2: 5′-AGGGAAGUUUGG
UCAAUCATT-3′.

In Vivo Xenograft Model
Animal experiments were performed in accordance with the
National Guidelines for Experimental Animal Welfare, with
approval from the Institutional Animal Care and Use
Committee of Longhua Hospital, Shanghai University of
Traditional Chinese Medicine. Five-week-old, BALB/c nude
female mice were purchased from Lingchang Biological
Technology Co., Ltd. (Shanghai, China). Mice were kept and
bred at a constant room temperature with a 12:12 h light/dark
cycle and fed a standard rodent diet and water. 2 × 107 Eca109
cells were subcutaneously injected into the bilateral flank of each
mouse. Then, mice were randomly divided into three
experimental groups (n = 5): control, 4 mg/kg celastrol
treatment group, and 8 mg/kg celastrol treatment group. Mice
were treated with either β-cyclodextrin crystalline (vehicle
control) or celastrol (4 or 8 mg/kg) via intraperitoneal
injection every other day. Tumor volumes were determined by
measuring length (l) and width (w) and calculating volume (V =
0.5 × l × w2) every other day. Mice were sacrificed, and tumor
tissues were weighed and photographed.

Statistical Analysis
The statistical significance of differences between groups was
assessed using GraphPad Prism 8 software (San Diego, CA,
United States). All data from three independent experiments
were expressed as mean ± SEM. The student’s t-test was used for
the comparison of parameters between groups. p-value of p < 0.05
was significant, n.s = not significant. For all tests, three levels of
significance (*p < 0.05, **p < 0.01, ***p < 0.001) were used.

RESULTS

Celastrol Inhibited the Viability of
Esophageal Squamous Cell Carcinoma
Cells
To evaluate the effect of celastrol on the proliferation of ESCC
cells, we first examined the IC50 values of celastrol on two ESCC
cell lines Eca109 and EC1. The IC50 values of celastrol on Eca109
and EC1 were 1.688 and 1.684 μM, respectively (Figure 1B).
Furthermore, we found a time and dose-dependent growth
inhibitory efficacy in two ESCC cell lines upon celastrol
treatment (Figure 1C). In addition, our results showed that
celastrol significantly inhibited the colony formation of both
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FIGURE 2 | Celastrol induced apoptosis in ESCC cells. (A,B) Eca109 and EC1 cells were treated with 1, 2, and 4 μM of celastrol or DMSO for 24 h. And then the
cells were stained with Annexin-V-FITC and PI apoptosis kit and tested by the flow cytometric analysis. Data were assessed with GraphPad Prism 8 software. (C)
Celastrol increased the expression level of c-PARP. Eca109 and EC1 cells were treated with 1, 2, and 4 μMcelastrol or DMSO for 24 h, and cell lysates were analyzed by
Western blotting with a specific antibody against c-PARP with β-actin as a loading control. (D) ATPlite assay was used to determine the cell viability of Eca109 and
EC1 cells treated with DMSO, 4 μM celastrol, 20 μM Z-VAD-FMK, or both for 24 h. (E) Eca109 and EC1 cells treated with DMSO, 4 μM celastrol, 20 μMZ-VAD-FMK, or
both for 24 h, and cell lysates were analyzed by Western blotting using an antibody against c-PARP with β-actin as a loading control. pdenotes p < 0.05, pppdenotes p <
0.001, n.s. denotes not significant.
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FIGURE 3 |Celastrol activated DR5-dependent extrinsic apoptosis by upregulating ATF4. (A) Celastrol induced the activation of caspase 8. Eca109 and EC1 cells
were treated with 1, 2, and 4 μM of celastrol or DMSO for 24 h, and cell lysates were analyzed by Western blotting using a specific antibody against c-caspase 8 with β-
actin as a loading control. (B)Celastrol activated extrinsic apoptosis by upregulated DR5. Eca109 and EC1 cells were treated with 1, 2, and 4 μMof celastrol or DMSO for
24 h, and cell lysates were analyzed by Western blotting using specific antibodies against TNFR1, TNFR2, DR3, and DR5 with β-actin as a loading control. (C)
Celastrol increased the mRNA level of DR5. Eca109 and EC1 cells were treated with 1, 2, and 4 μM of celastrol or DMSO for 24 h, and the mRNA level of DR5 was
determined by the real-time PCR. (D,E) Knockdown of DR5 inhibited apoptosis induced by celastrol. Eca109 and EC1 cells were transfected with control or siDR5 for

(Continued )
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two ESCC cell lines in a dose-dependent manner (Figures 1D,E).
Therefore, these findings demonstrated celastrol obviously
inhibited the viability of ESCC cells.

Celastrol Induced Apoptosis in Esophageal
Squamous Cell Carcinoma Cells
In order to explore the mechanism of celastrol inhibiting the
viability of ESCC cells, we determined the cellular response
elicited by celastrol. We observed an obvious feature of
apoptosis-shrunk morphology of ESCC cells under the
treatment of celastrol (data not shown). Annexin V-FITC/PI
double-staining analysis was further used to verify whether
celastrol induced apoptosis in ESCC cells. As shown in Figures
2A,B, celastrol treatment resulted in a remarkable increase in the
apoptotic cell population. Furthermore, we detected the expression
of c-PARP, the classical marker of apoptosis. As shown, the
expression level of c-PARP was obviously upregulated upon
celastrol stimulation (Figure 2C). In addition, we found that
apoptosis inhibitor Z-VAD-FMK alleviated the inhibition of
celastrol on the viability of ESCC cells (Figures 2D,E). These
results collectively demonstrated that celastrol inhibited the growth
of ESCC cells by triggering apoptosis.

Celastrol Induced DR5-Dependent Extrinsic
Apoptosis by Transcriptional Activation of
ATF4
To further characterize the mechanism underlying celastrol-
induced apoptosis, we determined the expression of c-caspase
8, a marker of extrinsic apoptosis. Our data showed that celastrol
upregulated the expression of c-caspase 8 in Eca109 and EC1
cells, indicating that celastrol activated extrinsic apoptosis
(Figure 3A). In order to explore the activation mechanism of
extrinsic (death receptor-mediated) apoptosis under celastrol
treatment, we evaluated the expression of death receptor
family members. Among these death receptors (TNRF1,
TNRF2, DR3, and DR5), the protein and mRNA levels of DR5
were significantly increased elicited by celastrol (Figures 3B,C).
To further define the role of DR5 in celastrol-induced apoptosis,
the expression of DR5 was downregulated using two siRNA
sequences. As shown, DR5 knockdown significantly attenuated
the percentage of apoptotic cells in ESCC cells (Figure 3D and
Supplementary Figure S1A), and downregulated the expression
of c-PARP (Figure 3E). These results suggested that celastrol-
triggered extrinsic apoptosis was mediated by DR5.

Previous studies reported that anti-cancer agents (e.g.,
MLN4924) transcriptionally activated ATF4 by inducing ER

stress, and subsequently induced CHOP-mediated DR5
transcription and caspase 8-mediated extrinsic apoptosis
(Chen et al., 2016). Therefore, we speculated celastrol activated
extrinsic apoptosis through ATF4-DR5 axis. To verify this
hypothesis, we first determined the expression of ATF4 and
CHOP, and the results showed that celastrol significantly
upregulated the expression of ATF4 and CHOP at both
protein and mRNA levels (Figures 3F,G and Supplementary
Figure S1B). Next, we determined whether DR5-induced
extrinsic apoptosis elicited by celastrol was dependent on
ATF4. Our results showed that ATF4 knockdown significantly
decreased the mRNA and protein levels of CHOP and DR5,
indicating that ATF4 transactivated CHOP and DR5 upon
celastrol stimulation (Figures 3H,I and Supplementary Figure
S1C). Meanwhile, the knockdown of ATF4 obviously
downregulated the expression of c-PARP (Figure 3I). Taken
together, these findings demonstrated that celastrol activated
extrinsic apoptosis of ESCC cells through the ATF4-DR5 axis.

ATF4 Meditated Celastrol-Induced Noxa
Upregulation
To investigate whether celastrol induced intrinsic apoptosis,
we determined the expression of c-caspase 9 in ESCC cells
exposed to celastrol. As shown, the expression level of
c-caspase 9 remarkably upregulated in both two ESCC cell
lines (Figure 4A). In order to illustrate the mechanism
underlying celastrol-induced intrinsic apoptosis, we
examined the expression of classical pro-apoptotic proteins,
including Bax, Bak, Bid, Noxa, and Bim. As shown, after
celastrol treatment, we observed the expression levels of
Noxa and Bim, two pro-apoptotic BH3-only members (Kale
et al., 2017), strikingly elevated in Eca109 and EC1 cells, while
the expression of Bax, Bak, and Bid did not change (Figures
4B,C), suggesting that celastrol activated Noxa and Bim. To
further define the role of Noxa in celastrol-induced intrinsic
apoptosis, the expression of NOXA was downregulated by
siRNA silencing in celastrol-treated cells. As shown, Noxa
knockdown significantly reduced the induction of apoptosis
and the cleavage of PARP, highlighting a critical role of Noxa
in celastrol-induced intrinsic apoptosis (Figures 4D,E and
Supplementary Figure S1D). Given that Noxa was known
to be regulated by ATF4, we, therefore, tested the involvement
of ATF4 in celastrol-induced Noxa expression (Sharma et al.,
2018). Indeed, downregulation of ATF4 significantly
suppressed the induction of Noxa at both mRNA and
protein levels (Figures 4F,G), supporting the notion that
ATF4 meditated celastrol-induced Noxa upregulation.

FIGURE 3 | 72 h, and then treated with 4 μM celastrol or DMSO for 24 h. Apoptosis induction was quantified by Annexin V-FITC/PI double-staining analysis. Cell lysates
were analyzed by Western blotting using specific antibodies against c-PARP and DR5 with β-actin as a loading control. (F) Celastrol induced the accumulation of ATF4
and CHOP. Eca109 and EC1 cells were treated with 1, 2, and 4 μMof celastrol or DMSO for 24 h. Cell lysates were analyzed byWestern blotting using antibodies against
ATF4 and CHOPwith β-actin as a loading control. (G)Celastrol increased the mRNA level of ATF4. Eca109 and EC1 cells were treated with1 μM, 2, and 4 μMof celastrol
or DMSO for 24 h, and the mRNA level of ATF4was determined by the real-time PCR. (H,I)Celastrol induced apoptosis of Eca109 and EC1 cells via the ATF4-DR5 axis.
Eca109 and EC1 cells were transfected with control or siATF4 for 72 h, and then treated with 4 μM celastrol or DMSO for 24 h. The effect of siATF4 onDR5 transcription
was analyzed by real-time PCR. Expression levels of ATF4, CHOP, DR5, and c-PARP were assessed by Western blotting with β-actin as a loading control. pdenotes p <
0.05, ppdenotes p < 0.01, pppdenotes p < 0.001, n.s. denotes not significant.
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FoxO3a Meditated Celastrol-Induced Bim
Upregulation

Our aforementioned results indicated that celastrol upregulated
the expression of the pro-apoptotic protein Bim (Figure 4B). We
further found that the mRNA level of BIM was significantly
elevated upon celastrol treatment (Figure 5A). To further

determine the potential role of Bim in celastrol-mediated
intrinsic apoptosis, the expression of BIM was downregulated
via siRNA silencing. Our data showed that knockdown of Bim
significantly alleviated the percentage of apoptotic cells induced
by celastrol (Figure 5B and Supplementary Figure S1E), along
with a reduction of the c-PARP (Figure 5C), demonstrating that
Bim was involved in celastrol-induced intrinsic apoptosis of

FIGURE 4 | ATF4 meditated celastrol-induced Noxa upregulation. (A) Celastrol induced the activation of caspase 9. Eca109 and EC1 cells were treated with 1, 2,
and 4 μM of celastrol or DMSO for 24 h, and cell lysates were analyzed by Western blotting using a specific antibody against c-caspase 9 with β-actin as a loading
control. (B) Celastrol activated extrinsic apoptosis by upregulating Noxa and Bim. Eca109 and EC1 cells were treated with 1, 2, and 4 μM of celastrol or DMSO for 24 h,
and then cell lysates were analyzed byWestern blotting with specific antibodies against Bak, Bad, Bid, Noxa, and Bim with β-actin as a loading control. Three major
Bim isoforms were created by alternative splicing: BimS, BimL, and BimEL. (C) Celastrol increased the mRNA level of NOXA. Eca109 and EC1 cells were treated with 1,
2, and 4 μM of celastrol or DMSO for 24 h, and the mRNA level of NOXA was determined by real-time PCR. (D) Knockdown of Noxa inhibited apoptosis induced by
celastrol. Eca109 and EC1 cells were transfected with control or siNOXA for 72 h, and then treated with 4 μM celastrol or DMSO for 24 h. Apoptosis induction was
quantified by Annexin V-FITC/PI double-staining analysis. (E) Cell lysates were analyzed by Western blotting using specific antibodies against c-PARP and Noxa with β-
actin as a loading control. (F,G) ATF4 meditated celastrol-induced Noxa upregulation. Eca109 and EC1 cells were transfected with control or siATF4 for 72 h, and then
treated with 4 μM celastrol or DMSO for 24 h. The effect of siATF4 on NOXA transcription was analyzed by real-time PCR. Expression levels of ATF4 and Noxa were
assessed by Western blotting analysis with β-actin as a loading control. pdenotes p < 0.05, ppdenotes p < 0.01, pppdenotes p < 0.001, n.s. denotes not significant.
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FIGURE 5 | FoxO3a meditated celastrol-induced Bim upregulation. (A) Celastrol increased the mRNA level of BIM. Eca109 and EC1 cells were treated with 1, 2,
and 4 μM of celastrol or DMSO for 24 h. The mRNA level of BIM was determined by real-time PCR. (B,C) Knockdown of Bim inhibited apoptosis induced by celastrol.
Eca109 and EC1 cells were transfected with control or siBIM for 72 h, and then treated with 4 μM celastrol or DMSO for 24 h. Apoptosis induction was quantified by
Annexin V-FITC/PI double-staining analysis. Cell lysates were analyzed by Western blotting using specific antibodies against c-PARP and Bim with β-actin as a
loading control. Threemajor Bim isoformswere created by alternative splicing: BimS, BimL, and BimEL. (D,E)Celastrol induced the upregulation of FoxO3a. Eca109 and
EC1 cells were treated with 1, 2, and 4 μM of celastrol or DMSO for 24 h, and cell lysates were analyzed by Western blotting with an antibody against Bim and FoxO3a
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ESCC cells. Considering that FOXO3, one of forkhead
transcription factor family, is the notable transcription factor
regulating BIM gene expression in response to apoptosis
(Zhenxing et al., 2019). We, therefore, examined the potential
role of FoxO3a in celastrol-induced Bim expression. As shown in
Figures 5D,E, celastrol treatment significantly upregulated the
mRNA and protein levels of FoxO3a in ESCC cells. Furthermore,
we found that downregulation of FoxO3a significantly inhibited
the accumulation of Bim induced by celastrol (Figures 5F,G),
illustrating that FoxO3a meditated celastrol-induced Bim
upregulation. Collectively, our findings demonstrated that
celastrol activated intrinsic apoptosis of ESCC cells via the
ATF4-Noxa and FoxO3a-Bim axis.

Celastrol Suppressed the Growth of
Esophageal Squamous Cell Carcinoma in
vivo
Finally, we established a subcutaneous transplantation tumor
model with Eca109 cells to examine the anti-tumor potential
of celastrol in vivo. Compared with the control group, celastrol
significantly inhibited the tumor growth over time (4 and 8 mg/kg
celastrol corresponded to p < 0.01 and p < 0.001 respectively,
Figure 6A). Moreover, the tumor weights of the celastrol-treated
mice were much lower than those of the control mice (p < 0.001,
Figures 6B,C). During the whole experiment, there was no
significant change in animal weights (Figure 6D) and no
significant morphological difference in liver and kidney (data
not shown) between the celastrol-treated group and the control
group. In addition, as shown in Figure 6E, celastrol triggered
extrinsic and intrinsic apoptosis in vivo, as evidenced by the
accumulation of apoptosis-related proteins in celastrol-treated
tumor tissue, including ATF4, DR5, c-caspase 8, Noxa, FoxO3a,
Bim, c-caspase 9, as well as c-caspase 3 and c-PARP. Together,
our findings indicated that celastrol activated extrinsic and
intrinsic apoptosis, thus inhibiting the tumor growth of ESCC
both in vitro and in vivo.

DISCUSSION

ESCC is a highly malignant tumor of the digestive system, and its
incidence andmortality rates are rising rapidly (Sung et al., 2021). In
recent years, although some progress has beenmade in the diagnosis
and treatment of ESCC, effective therapeutic strategies are still
insufficient (Yang et al., 2020). An increasing body of evidence
suggested that the natural products exhibited the potential anti-
tumor efficacy in ESCC (Ying et al., 2018). In our study, we validated
that celastrol was a promising candidate for the treatment of ESCC.
We showed that celastrol significantly suppressed the malignant

proliferation of ESCC cells, and strikingly inhibited the tumor
growth in nude mouse xenograft model. Mechanistically, we
demonstrated that celastrol coordinatively triggered DR5-
dependent extrinsic apoptosis and Noxa-dependent intrinsic
apoptosis through transcriptional activation of ATF4.
Furthermore, we revealed that the FoxO3a-Bim pathway
contributed to celastrol-induced intrinsic apoptosis of ESCC cells
(Figure 6F). Our findings demonstrated the substantial inhibitory
effect of celastrol on ESCC, which provided an attractive choice for
the ESCC treatment.

It was reported that ER stress upregulated the expression of ATF4
and CHOP in response to unfolded protein response (UPR) (Kim
et al., 2021). Death receptor DR5, a downstream target of CHOP,
was activated after CHOP accumulation, and further triggered
apoptosis cascades (Chen et al., 2016). In our study, we found
that celastrol activated extrinsic apoptosis through the ATF4-
CHOP-DR5 pathway, as evidenced by significantly diminished
the expression of CHOP and DR5 after ATF4 knockdown.
Except for CHOP and DR5, we found that ATF4 knockdown
reduced celastrol-induced Noxa accumulation as well, suggesting
that celastrol triggered Noxa-dependent intrinsic apoptosis by
transcriptionally activating ATF4. Studies have shown that
natural products such as parthenolide and curcumin activate
eIF2α through ER stress, which in turn activates ATF4 and
triggers apoptosis (Wu et al., 2010; Zhao et al., 2014). Therefore,
celastrol might also activate ATF4 through ER stress. The
mechanism by which celastrol transcriptionally activated ATF4
needs to be further clarified. Furthermore, our data showed that
celastrol up-regulated the expression of p53, which was known to
transcriptionally regulate Noxa expression as well (Supplementary
Figure S2B) (Furukawa et al., 2018). Therefore, apart from ATF4,
p53 may also be involved in the upregulation of Noxa induced by
celastrol. Interestingly, in addition to Noxa, we found Bim
contributed to celastrol-induced intrinsic apoptosis of ESCC cells,
and FoxO3a meditated celastrol-induced Bim upregulation.
However, FoxO3a knockdown did not completely alleviate
celastrol-induced Bim accumulation. Given that other
transcription factors (Smad3, E2F1, JNK/c-Jun, and c-Myc, etc)
that are known to mediate Bim expression, whether these
transcription factors are involved in the Bim induction elicited by
celastrol remains further exploration (Chen et al., 2014; Muthalagu
et al., 2014; Shats et al., 2017; Wildey et al., 2021).

The rapid growth of cancer cells is attributed to the accelerated
cell cycle process (Zheng et al., 2019). In view of this, the blockage of
the cell cycle process is considered an effective strategy to halt tumor
growth (Thu et al., 2018). Previous studies have reported that
celastrol prevented tumor cell proliferation by inducing cell cycle
arrest (Ni et al., 2019). We found that celastrol treatment increased
the cell populations in the G2/M phase of the cell cycle in ESCC cells
(Supplementary Figure S2A). Furthermore, we showed that

FIGURE 5 | with β-actin as a loading control. Three major Bim isoforms were created by alternative splicing: BimS, BimL, and BimEL. The mRNA level of FOXO3 was
determined by real-time PCR. (F,G) FoxO3a was the response to celastrol-induced Bim upregulation. Eca109 and EC1 cells were transfected (72 h) with control or
siFOXO3, and treated with 4 μM celastrol for 24 h. The effect of siFOXO3 on BIM transcription was analyzed by real-time PCR. Expression levels of FoxO3a and Bim
were assessed by Western blotting analysis with β-actin as a loading control. Three major Bim isoforms were created by alternative splicing: BimS, BimL, and BimEL.
pdenotes p < 0.05, ppdenotes p < 0.01, pppdenotes p < 0.001, n.s. denotes not significant.
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FIGURE 6 | Celastrol suppressed the growth of ESCC in vivo. (A) Nude mice have subcutaneously transplanted Eca109 cells and are treated with celastrol as
described in Materials and Methods. Tumor size was determined with a caliper every other day, and the volume was calculated to construct a growth curve. (B) Mice
were sacrificed, and tumor tissues were harvested and photographed. (C) The tumor weight was measured with an electronic scale on the sacrificed day. (D) Body
weight of each mouse was recorded every other day during the whole experiment. (E) Celastrol induced extrinsic and intrinsic apoptosis in vivo. Proteins extracted
from tumor tissues were analyzed by Western blotting using specific antibodies against ATF4, DR5, c-caspase 8, Noxa, FoxO3a, Bim, c-caspase 9, c-caspase 3, and
c-PARP with β-actin as a loading control. Three major Bim isoforms were created by alternative splicing: BimS, BimL, and BimEL. (F) The mechanism of celastrol inhibits
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celastrol significantly upregulated the expression of the mitotic
marker p-histone 3 (p-H3, ser10) and downregulated the
expression of G2 phase marker p-cdc2, suggesting that celastrol
induced ESCC cells to pass through G2/M checkpoint and then
arrest at M phase. In addition, we found that celastrol caused the
accumulation of cell cycle inhibitory protein p21 and its upstream
protein p53, indicating that celastrol induced M-phase cell cycle
arrest through the p53/p21 signaling pathway (Supplementary
Figure S2B). It is well known that the best-characterized p53
function is the response to acute DNA damage (Boutelle and
Attardi, 2021). Our data showed that celastrol significantly
upregulated the expression of DNA damage marker p-H2AX,
suggesting that celastrol initiated DNA damage and the activation
of the p53/p21 signaling pathway, and then promoted cell cycle
arrest (Supplementary Figure S2B). In fact, the persistence of DNA
damage will induce programmed cell death such as apoptosis or cell
senescence (Roos et al., 2015; Ou and Schumacher, 2018). Therefore,
in our study, it is possible that celastrol caused the persistence of cell
DNA damage during cell cycle arrest, which eventually led to
apoptosis of ESCC cells. Furthermore, our results showed that
caspase inhibitor Z-VAD-FMK only partially rescued the cellular
viability after celastrol treatment, indicating that celastrol inhibited
the proliferation of ESCC cells by inducing the combinatory effects
of both cell cycle arrest and apoptosis.

In summary, our study revealed a previously unknown
inhibitory efficacy of celastrol on ESCC by activating DR5-
dependent extrinsic and Noxa/Bim-dependent intrinsic
apoptosis, suggesting that celastrol was a candidate for
apoptosis inducer in recalcitrant human ESCC.
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